Корреляционный анализ солнечной и геомагнитной активностей
Введение
Германский любитель астрономии Генрих Швабе, наблюдавший за солнечным диском с 1826г. по1843г. в поисках новой планеты, заметил 11-летний цикл изменения количества пятен на Солнце. Однако ранее, Питер Горребов (Дания г.Копенгаген), интервал наблюдений которого 1761-1769г., утверждал о периодичности солнечных пятен, связывая их появления с мощными полярными сияниями. В середине 19 в. Иоганн фон Ламон обнаружил увеличение числа магнитных бурь с таким же периодом, а в конце этого же века В.О. Биркелан предположил, что кроме электромагнитного излучения Солнце испускает частицы. Эти и последующие открытия положили начало изучению солнечно-земных связей- разделу науки на стыке геофизики и физики Солнца.[1]
Проявлением солнечно-земных связей является следующая последовательность событий: с возникновения солнечной вспышки в солнечном ветре (СВ) генерируется ударная волна, несколько опережающая плазменное облако; по достижению Земли ударная волна порождает магнитную бурю, а облако плазмы — суббури. Развитие и затухание центра активности также вызывают магнитосферные возмущения. Это обусловлено тем, что подобные процессы приводят к перераспределению магнитных полей и потоков солнечной плазмы, исходящих в межпланетное пространство. Поскольку в различных частях солнечного диска развивается и затухает несколько центров активности , магнитосфера погружена в непрерывно изменяющуюся межпланетную секторную структуру (МСС).В каждой секторной структуре происходит систематическое изменение плотности СВ, его скорости и напряжённости магнитного поля. Неоднородность перечисленных характеристик связана с нестабильной солнечной активностью. Для более глубокого исследования солнечно-земных связей вводятся численные оценки меры солнечных воздействий и земных откликов на них, т.е. специальные индексы.
1.
Солнечная активность
Причиной нестабильности активности Солнца является его дифференциальное вращение, которое «вытягивает» погружённые силовые линии магнитного поля Солнца и усиливает его до 2000-4000Гс. Это усиление делает погружённые силовые трубки неустойчивыми, обуславливая их появление над поверхностью фотосферы на гелиографических широтах ±40° и постепенное снижение к экватору. В точках пересечения образуются пятна(первым- ведущее пятно), в областях над ними разогревается хромосфера и корона- образование факелов (флоккул)и протуберанцев (волокон).
|

Из-за турбулентности, происходящей под фотосферой, магнитное поле центра активности становится сложным и неустойчивым- образуются новые пятна. На широте 15° центр активности достигает максимума, характеризующегося наибольшим числом пятен и солнечными вспышками. Приближаясь к широте 3° центр активности окончательно затухает.[2]
Большую часть времени жизни пятна его магнитное поле остаётся постоянным, в то время как площадь пятна по достижения максимума только убывает. Открыл Коулинг в 1946 году, сравнивая данные о магнитных полях и площади пятен, полученные в Маунт Вилсон, (рис. 2)
|

Выведенные кривые являются усреднёнными, в них сглажены флуктуации поля ото дня ко дню, не носящие систематического характера. Следовательно, магнитное поле не создаётся вместе с пятном, а лишь «выходит» на поверхность, а затем опять опускается вниз под фотосферу.[4]
Ранее отмечалось, что при наибольшей концентрации пятен в центре активности возникают солнечные вспышки (эрупции). К их возникновению приводит взаимное движение пятен, при котором происходит изменение потока магнитной индукции, возбуждающие электрическое поле. Это поле ускоряет частицы солнечной плазмы — повышение температуры плазмы. Вспышка характеризуется резким увеличением яркости хромосферы над максимумами центров активости. Ее длительность от 5 до 40 минут, в годы максимума может достигать 3 и более часов. Количество выделяемой энергии может достигать 1033 Дж (≈ 1 млн. водородных бомб). Т.е. эрупции – это сильные взрывы, порождаемые сжатием солнечной плазмы под действием давления магнитных полей.
1.1 Количественное измерение солнечной активности
Интересные статьи:
Возникновение и развитие звезд
Происхождение звезд
В общих чертах эволюцию протозвезды можно разделить на три этапа, или фазы. Первый этап - обособление фрагмента облака и его уплотнение - мы уже рассмотрели. Вслед за ним наступает этап быстрого сжатия. В его начале р ...
Мировоззрение адекватное законам Природы
О мироздании в целом
Все доступное для исследования вещество состоит из одних и тех же химических элементов; их количественные соотношения (распространенность), в пределах порядка величины, практически одинаковы (Вернадский, 1926).
Проц ...
Концепция метаболизма и биологическая картина мира
Введение
Растительный и животный мир обладают признаками характерными для живой материи: способны к самовоспроизводству, для них характерны рост, развитие, раздражимость, саморегуляция, обмен веществ с окружающей средой и ряд других пара ...