Возникновение и развитие звезд

Страница 5

Нейтронные звёзды

Большинство нейтронных звёзд образуется при коллапсе ядер звёзд массой более десяти солнечных. Их рождение сопровождается грандиозным небесным явлением — вспышкой сверхновой звезды. Зная из наблюдений, что вспышки сверхновых в нормальной галактике происходят примерно раз в 25 лет, легко вычислить, что за время существования нашей Галактики (10 — 15 млрд. лет) в ней должно было образоваться несколько сот миллионов нейтронных звёзд! Как же они должны проявлять себя? Молодые нейтронные звёзды быстро вращаются (периоды их вращения измеряются миллисекундами!) и обладают сильным магнитным полем. Вращение вместе с магнитным полем создают мощные электрические поля, которые вырывают заряженные частицы из твёрдой поверхности нейтронной звезды и ускоряют их до очень высоких энергий (см. статью «Необычные объекты: нейтронные звёзды и чёрные дыры»). Эти частицы | излучают радиоволны. С потерей энергии вращение нейтронной звезды тормозится, электрический потенциал, создаваемый магнитным полем, падает. При некотором его значении заряженные частицы перестают рождаться и радиопульсар «затухает». Это происходит за время около 10 млн. лет, поэтому действующих пульсаров в Галактике должно быть несколько сот тысяч (один на 1500 звёзд соответствующей массы). В настоящее время наблюдается примерно 700 пульсаров. Как и для белых карликов, для нейтронных звёзд существует предельно возможная масса (она носит название предела Оппенгеймера — Волкова). Однако строение материи при столь высоких плотностях известно плохо. Поэтому предел Оппенгеймера — Волкова точно не установлен, его величина зависит от сделанных предположений о типе и взаимодействии частиц внутри нейтронной звезды. Но в любом случае он не превышает трёх масс Солнца. Если масса нейтронной звезды превосходит это значение, никакое давление вещества не может противодействовать силам гравитации. Звезда становится неустойчивой и быстро коллапсирует. Так образуется чёрная дыра.

Расстояние от нас до звезд

Ещё в древние времена астрономы поняли, что звёзды находятся дальше от Земли, чем Луна и другие планеты. Наблюдая небо, они замечали, что Луна, перемещаясь по небу, закрывает то одну, то другую звезду, но ни одна звезда не бывает перед Луной. Иногда и планеты, например, Юпитер, загораживают звёзды. Значит, звёзды находятся дальше планет.

Коперник указал, что звёзды находятся на огромных расстояниях и только поэтому не могут быть замечены те смещения положений звёзд на небе, которые неизбежно должны быть в силу движения Земли со звёздами в мировом пространстве. Такие смещения астрономы не могли подметить ещё почти три века после Коперника, несмотря на то, что за это время были достигнуты огромные успехи в конструкции астрономических инструментов и в точности наблюдений. В середине XVIII века выдающиеся учёные Брадлей в Англии и Ламберт в Германии пришли к выводу о том, что расстояния даже до ближайших звёзд в сотни тысяч раз превышают расстояния от Земли до Солнца. Но точно измерить расстояние они всё-таки не смогли.

Страницы: 1 2 3 4 5 6 7 8

Интересные статьи:

Проявление солнечной активности в геофизических параметрах
ВВЕДЕНИЕ Проблема «Солнце – Земля» является на сегодняшний день актуальной по многим причинам. Во-первых, это проблема альтернативных источников энергии на Земле. Солнечная энергия – неисчерпаемый источник энергии, притом безопасный. Во-в ...

Измерение времени
Измерение времени Ответить на вопрос «что такое время» нелегко. В самом общем виде можно сказать, что время – это непрерывная череда сменяющих друг друга явлений. Главное свойство времени состоит в том, что оно длится, течет безостановоч ...

Пространство без бесконечности
А, действительно, если Вселенная не бесконечна… Может такое быть? Оказывается, может. И даже не в том понимании, что она занимает часть пространства. Вселенная может занимать и всё пространство, но это пространство не имеет мест в мате ...