В помощь учителю астрономии
4
. Зная, что после 1-го года до Р. Хр. следовал сразу 1-й год по Р. Хр., определите, високосный или простой был 45-й год до Р. Хр., т.-е. год введения юлианского календаря?
Так как после 1-го года до Р. Хр. следовал сразу 1-й год по Р. Хр., т.-е. не было нулевого года, то 45-й год до Р. Хр. нужно считать високосным годом.
5.
По постановлению Никейского собора (325 г.) православная церковь празднует пасху в первое воскресенье после первого весеннего полнолуния, т. е. после первого полнолуния, которое придется после 21-го марта.
Гаусс дал следующее простое правило для вычисления пасхи в юлианском календаре: разделив номер года на 19, 4 и 7, обозначим остатки через a, b, c; остаток обозначим через d; остаток
через e; – тогда получим, что пасха в юлианском календаре будет (22 + d + e) марта.
Пользуясь этим правилом Гаусса, найти, когда была пасха в 1923 г.? 1030? 1954? и 2004 году по юлианскому календарю?
Для 1923 года вычисления по правилу Гаусса, дадут следующие значения: a = 4:, b = 3, c = 5, d = 1, е = 3. Следовательно, пасха в 1923 г. будет 26 марта по юлианскому календарю или 8 апреля по новому стилю. Для следующих годов предоставляется самостоятельно сделать эти вычисления.
6.
Для римско-католической и протестантской церкви пасха вычисляется по несколько видоизмененной формуле Гаусса, а именно – разделив номер года на 19, 4 и 7, обозначим остатки через a, b, c; остаток обозначим через d; остаток
через e; тогда получим, что пасха в григорианском календаре будет (22 + d + e) марта.
Пользуясь этим правилом Гаусса, найти, когда будет пасха в римско-католической и протестантской церкви в 1923 г.? 1954? 1981? 2004?
Для 1923 г. вычисления по правилу Гаусса дадут следующие значения: a = 4, b = 3, c = 5, d = 10, e = 0. Следовательно, Пасха в 1923г. в римско-католической церкви будет (22 + 10 + 0) марта или 1-го апреля по григорианскому календарю.
Для следующих годов предлагается самостоятельно сделать эти вычисления.
Замечание 1. В случаях, когда в вычислении получается d = 28 или d = 29, а e = 6, нужно брать неделей раньше. Такие исключительные случаи встречаются только в григорианском календаре и то очень редко, в юлианском же календаре их совершенно не бывает.
В последней задаче имели как раз эти два исключительные случая:
1) Для 1954 г. имеем: d = 28, e = 6, и день пасхи по григорианскому календарю в 1954 г. был 18-го апреля, а не 25 апреля, как получается по вычислению.
2) Для 1981 г. имеем: d = 29, e = 6, и день пасхи по григорианскому календарю в 1981 г. будет 19-го апреля, а не 26-го апреля, как это получается
по вычислению.
Замечание 2. Для юлианского календаря правило Гаусса остается всегда справедливым; для григорианского же приведенные формулы справедливы только для периода с 1900 по 2099-й год, а для других периодов их нужно несколько изменить.
7.
Чтобы определить день недели, если известна точная дата какого-нибудь события по старому стилю, Целлер предложил следующее правило: предположим, что p-й день q-ого месяца N-ого года по Р. Хр. будет r-ый день недели, считая от предыдущей субботы (т. е. при определении дня надо начинать счет с воскресенья). Тогда r есть остаток от деления на 7 числа:
Интересные статьи:
Модель Большого взрыва и расширяющейся Вселенной
Введение
Одной из основных концепций современного естествознания является учение о Вселенной как едином целом и обо всей охваченной астрономическими наблюдениями области Вселенной (Метагалактике) как части целого – космология.
Выводы ко ...
Созвездие Плеяды
1.
О
бщие сведенья о созвездии Плеяды
Созвездие Плеяд – ближайшее к Земле звездное скопление
Рассеянное скопление в созвездии Тельца
Прямое восхождение: 3ч 47м
Склонение: 24° 07`
(2000)
Видимая звездная величина: 1,6
Расстояние ...
Красное смещение и закон Хаббла
Введение
Существует много глубоких философских проблем в основе нашего современного понимания физики. Начиная с самых больших масштабов, с природы Большого Взрыва, движения вселенной и происхождения космологической структуры. В пределах ...